Model Gallery

Discover and install AI models from our curated collection

3 models available
1 repositories
Documentation

Find Your Perfect Model

Filter by Model Type

Browse by Tags

qwen3-vl-reranker-8b
**Model Name:** Qwen3-VL-Reranker-8B **Base Model:** Qwen/Qwen3-VL-Reranker-8B **Description:** A high-performance multimodal reranking model for state-of-the-art cross-modal search. It supports 30+ languages and handles text, images, screenshots, videos, and mixed modalities. With 8B parameters and a 32K context length, it refines retrieval results by combining embedding vectors with precise relevance scores. Optimized for efficiency, it supports quantized versions (e.g., Q8_0, Q4_K_M) and is ideal for applications requiring accurate multimodal content matching. **Key Features:** - **Multimodal**: Text, images, videos, and mixed content. - **Language Support**: 30+ languages. - **Quantization**: Available in Q8_0 (best quality), Q4_K_M (fast, recommended), and lower-precision options. - **Performance**: Outperforms base models in retrieval tasks (e.g., JinaVDR, ViDoRe v3). - **Use Case**: Enhances search pipelines by refining embeddings with precise relevance scores. **Downloads:** - [GGUF Files](https://huggingface.co/mradermacher/Qwen3-VL-Reranker-8B-GGUF) (e.g., `Qwen3-VL-Reranker-8B.Q8_0.gguf`). **Usage:** - Requires `transformers`, `qwen-vl-utils`, and `torch`. - Example: `from scripts.qwen3_vl_reranker import Qwen3VLReranker; model = Qwen3VLReranker(...)` **Citation:** @article{qwen3vlembedding, ...} This description emphasizes its capabilities, efficiency, and versatility for multimodal search tasks.

Repository: localai

jina-reranker-v1-tiny-en
This model is designed for blazing-fast reranking while maintaining competitive performance. What's more, it leverages the power of our JinaBERT model as its foundation. JinaBERT itself is a unique variant of the BERT architecture that supports the symmetric bidirectional variant of ALiBi. This allows jina-reranker-v1-tiny-en to process significantly longer sequences of text compared to other reranking models, up to an impressive 8,192 tokens.

Repository: localai

cross-encoder
A cross-encoder model that can be used for reranking

Repository: localaiLicense: apache-2.0