qwen3-vl-reranker-8b
**Model Name:** Qwen3-VL-Reranker-8B
**Base Model:** Qwen/Qwen3-VL-Reranker-8B
**Description:**
A high-performance multimodal reranking model for state-of-the-art cross-modal search. It supports 30+ languages and handles text, images, screenshots, videos, and mixed modalities. With 8B parameters and a 32K context length, it refines retrieval results by combining embedding vectors with precise relevance scores. Optimized for efficiency, it supports quantized versions (e.g., Q8_0, Q4_K_M) and is ideal for applications requiring accurate multimodal content matching.
**Key Features:**
- **Multimodal**: Text, images, videos, and mixed content.
- **Language Support**: 30+ languages.
- **Quantization**: Available in Q8_0 (best quality), Q4_K_M (fast, recommended), and lower-precision options.
- **Performance**: Outperforms base models in retrieval tasks (e.g., JinaVDR, ViDoRe v3).
- **Use Case**: Enhances search pipelines by refining embeddings with precise relevance scores.
**Downloads:**
- [GGUF Files](https://huggingface.co/mradermacher/Qwen3-VL-Reranker-8B-GGUF) (e.g., `Qwen3-VL-Reranker-8B.Q8_0.gguf`).
**Usage:**
- Requires `transformers`, `qwen-vl-utils`, and `torch`.
- Example: `from scripts.qwen3_vl_reranker import Qwen3VLReranker; model = Qwen3VLReranker(...)`
**Citation:**
@article{qwen3vlembedding, ...}
This description emphasizes its capabilities, efficiency, and versatility for multimodal search tasks.